Reflection of stationary Sets and the Tree Property at the Successor of a singular cardinal
نویسندگان
چکیده
We show that from infinitely many supercompact cardinals one can force a model of ZFC where both the tree property and the stationary reflection hold at אω2+1.
منابع مشابه
Weak reflection at the successor of a singular cardinal
The notion of stationary reflection is one of the most important notions of combinatorial set theory. We investigate weak reflection, which is, as its name suggests, a weak version of stationary reflection. Our main result is that modulo a large cardinal assumption close to 2hugeness, there can be a regular cardinal κ such that the first cardinal
متن کاملApproachability at the second successor of a singular cardinal
We prove that if μ is a regular cardinal and P is a μ-centered forcing poset, then P forces that (I[μ++])V generates I[μ++] modulo clubs. Using this result, we construct models in which the approachability property fails at the successor of a singular cardinal. We also construct models in which the properties of being internally club and internally approachable are distinct for sets of size the...
متن کاملA remark on the tree property in a choiceless context
We show that the consistency of the theory “ZF + DC + Every successor cardinal is regular + Every limit cardinal is singular + Every successor cardinal satisfies the tree property” follows from the consistency of a proper class of supercompact cardinals. This extends earlier results due to the author showing that the consistency of the theory “ZF + ¬ACω + Every successor cardinal is regular + E...
متن کاملDiagonal Prikry extensions
It is a well-known phenomenon in set theory that problems in infinite combinatorics involving singular cardinals and their successors tend to be harder than the parallel problems for regular cardinals. Examples include the behaviour of cardinal exponentiation, the extent of the tree property, the extent of stationary reflection, and the existence of non-free almost-free abelian groups. The expl...
متن کاملTree Property at Successor of a Singular Limit of Measurable Cardinals
Assume λ is a singular limit of η supercompact cardinals, where η ≤ λ is a limit ordinal. We present two forcing methods for making λ+ the successor of the limit of the first η measurable cardinals while the tree property holding at λ+. The first method is then used to get, from the same assumptions, tree property at אη2+1 with the failure of SCH at אη2 . This extends results of Neeman and Sina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 82 شماره
صفحات -
تاریخ انتشار 2017